Given the linear differential equation below:
$$ y' = 4y + 16 $$which alternative corresponds to a possible solution?
- \( y(t) = e^{4t - 4} - 16 \)
- \( y(t) = 13e^{4t - 4} - 4 \)
- \( y(t) = e^{t} - 16 \)
- \( y(t) = 25e^{t} - 256 \)
- None of the above.
Original Idea by: José Nascimento
No comments:
Post a Comment