MathJax


Sunday, May 15, 2022

2022-104

Consider the following integral:

cos2xdx

Which of the alternatives has a correct intermediate step and the solution, using Euler's formulas below, where i represents the imaginary unit?

cosθ=eθi+eθi2 sinθ=eθieθi2i
  1. 12(e2ix+2e2ix)dx=12(e2ix2i+2xe2ix2i)+c
  2. 14(e2ix+2+e2ix)dx=14(e2ix2i+2xe2ix2i)+c
  3. 14(e2ix+e2ix)dx=14(e2ix2i+e2ix2i)+c
  4. 14(e2x+2+e2x)dx=14(e2x2+2x+e2x2)+c
  5. None of the above

Original idea by: Diogo Souza

No comments:

Post a Comment

2024-248

  Consider the following networks:   Which of the following options correctly ranks these networks from  most  robust to  least  robust agai...